### Chapter 1

Limits And Their Properties

1.1 | A Preview of Calculus | Exercises | p.47 |

1.2 | Finding Limits Graphically and Numerically | Exercises | p.54 |

1.3 | Evaluating Limits Analytically | Exercises | p.65 |

1.4 | Continuity and One-Sided Limits | Exercises | p.76 |

1.5 | Infinite Limits | Exercises | p.85 |

Review Exercises | p.88 | ||

Problem Solving | p.90 |

### Chapter 2

Differentiation

2.1 | The Derivative and the Tangent Line Problem | Exercises | p.101 |

2.2 | Basic Differentiation Rules and Rates of Change | Exercises | p.113 |

2.3 | The Product and Quotient Rules and Higher-Order Derivatives | Exercises | p.124 |

2.4 | The Chain Rule | Exercises | p.133 |

2.5 | Implicit Differentiation | Exercises | p.142 |

2.6 | Related Rates | Exercises | p.149 |

Review Exercises | p.153 | ||

Problem Solving | p.156 |

### Chapter 3

Applications Of Differentiation

3.1 | Extrema on an Interval | Exercises | p.165 |

3.2 | Rolle's Theorem and the Mean Value Theorem | Exercises | p.172 |

3.3 | Increasing and Decreasing Functions and the First Derivative Test | Exercises | p.181 |

3.4 | Concavity and the Second Derivative Test | Exercises | p.189 |

3.5 | Limits at Infinity | Exercises | p.199 |

3.6 | A Summary of Curve Sketching | Exercises | p.208 |

3.7 | Optimization Problems | Exercises | p.216 |

3.8 | Newton's Method | Exercises | p.226 |

3.9 | Differentials | Exercises | p.233 |

Review Exercises | p.235 | ||

Problem Solving | p.238 |

### Chapter 4

Integration

4.1 | Antiderivatives and Indefinite Integration | Exercises | p.249 |

4.2 | Area | Exercises | p.261 |

4.3 | Reimann Sums and Definite Integrals | Exercises | p.272 |

4.4 | The Fundamental Theorem of Calculus | Exercises | p.284 |

4.5 | Integration by Substitution | Exercises | p.297 |

4.6 | Numerical Integration | Exercises | p.305 |

Review Exercises | p.307 | ||

Problem Solving | p.310 |

### Chapter 5

Logarithmic, Exponential, And Other Transcendental Functions

5.1 | The Natural Logarithmic Function and Differentiation | Exercises | p.321 |

5.2 | The Natural Logarithmic Function and Integration | Exercises | p.330 |

5.3 | Inverse Functions | Exercises | p.338 |

5.4 | Exponential Functions: Differentiation and Integration | Exercises | p.347 |

5.5 | Bases Other Than e and Applications | Exercises | p.357 |

5.6 | Differential Equations: Growth and Decay | Exercises | p.366 |

5.7 | Differential Equations: Separation of Variables | Exercises | p.377 |

5.8 | Inverse Trigonometric Functions and Differentiation | Exercises | p.386 |

5.9 | Inverse Trigonometric Functions and Integration | Exercises | p.393 |

5.10 | Hyperbolic Functions | Exercises | p.403 |

Review Exercises | p.405 | ||

Problem Solving | p.408 |

### Chapter 6

Applications Of Integration

6.1 | Area of a Region Between Two Curves | Exercises | p.418 |

6.2 | Volume: The Disk Method | Exercises | p.428 |

6.3 | Volume: The Shell Method | Exercises | p.437 |

6.4 | Arc Length and Surfaces of Revolution | Exercises | p.447 |

6.5 | Work | Exercises | p.456 |

6.6 | Moments, Centers of Mass, and Centroids | Exercises | p.467 |

6.7 | Fluid Pressure and Fluid Force | Exercises | p.474 |

Review Exercises | p.476 | ||

Problem Solving | p.478 |

### Chapter 7

Integration Techniques, L'Hôpital's Rule, And Improper Integrals

7.1 | Basic Integration Rules | Exercises | p.486 |

7.2 | Integration by Parts | Exercises | p.494 |

7.3 | Trigonometric Integrals | Exercises | p.503 |

7.4 | Trigonometric Substitution | Exercises | p.512 |

7.5 | Partial Fractions | Exercises | p.522 |

7.6 | Integration by Tables and Other Integration Techniques | Exercises | p.528 |

7.7 | Indeterminate Forms and L'Hôpital's Rule | Exercises | p.537 |

7.8 | Improper Integrals | Exercises | p.547 |

Review Exercises | p.550 | ||

Problem Solving | p.552 |

### Chapter 8

Infinite Series

8.1 | Sequences | Exercises | p.564 |

8.2 | Series and Convergence | Exercises | p.573 |

8.3 | The Integral Test and p-Series | Exercises | p.580 |

8.4 | Comparison of Series | Exercises | p.587 |

8.5 | Alternating Series | Exercises | p.595 |

8.6 | The Ratio and Root Tests | Exercises | p.603 |

8.7 | Taylor Polynomials and Approximations | Exercises | p.613 |

8.8 | Power Series | Exercises | p.623 |

8.9 | Representation of Functions by Power Series | Exercises | p.630 |

8.10 | Taylor and Maclaurian Series | Exercises | p.641 |

Review Exercises | p.643 | ||

Problem Solving | p.646 |

### Chapter 9

Conics, Parametric Equations, And Polar Coordinates

9.1 | Conics and Calculus | Exercises | p.660 |

9.2 | Plane Curves and Parametric Equations | Exercises | p.672 |

9.3 | Parametric Equations and Calculus | Exercises | p.681 |

9.4 | Polar Coordinates and Polar Graphs | Exercises | p.691 |

9.5 | Area and Arc Length in Polar Coordinates | Exercises | p.700 |

9.6 | Polar Equations of Conics and Kepler's Laws | Exercises | p.707 |

Review Exercises | p.709 | ||

Problem Solving | p.712 |

### Chapter P

Preparation For Calculus

P.1 | Graphs and Models | Exercises | p.8 |

P.2 | Linear Models and Rates of Change | Exercises | p.16 |

P.3 | Functions and Their Graphs | Exercises | p.27 |

P.4 | Fitting Models to Data | Exercises | p.33 |

Review Exercises | p.36 | ||

Problem Solving | p.38 |