 # Larson Calculus, 9th Edition Larson Calculus, 9th Edition

ISBN: 9780547167022 / 0547167024

Textbook solutions

FREE

Expert verified

5,864 ### Chapter P

Preparation For Calculus

 P.1 Graphs and Models Exercises p.8 P.2 Linear Models and Rates of Change Exercises p.16 P.3 Functions and Their Graphs Exercises p.27 P.4 Fitting Models to Data Exercises p.34 Review Exercises p.37 Problem Solving p.39

### Chapter 1

Limits And Their Properties

 1.1 A Preview of Calculus Exercises p.47 1.2 Finding Limits Graphically and Numerically Exercises p.54 1.3 Evaluating Limits Analytically Exercises p.67 1.4 Continuity and One-Sided Limits Exercises p.78 1.5 Infinite Limits Exercises p.88 Review Exercises p.91 Problem Solving p.93

### Chapter 2

Differentiation

 2.1 The Derivative and the Tangent Line Problem Exercises p.103 2.2 Basic Differentiation Exercises p.115 2.3 Product and Quotient Rules and Higher-Order Derivatives Exercises p.126 2.4 The Chain Rule Exercises p.137 2.5 Implicit Differentiation Exercises p.146 2.6 Related Rates Exercises p.154 Review Exercises p.158 Problem Solving p.161

### Chapter 3

Application Of Differentiation

 3.1 Extrema on an Interval Exercises p.169 3.2 Rolle's Theorem and the Mean Value Theorem Exercises p.176 3.3 Increasing and Decreasing Functions and the First Derivative Test Exercises p.186 3.4 Concavity and the Second Derivative Test Exercises p.195 3.5 Limits at Infinity Exercises p.205 3.6 A Summary of Curve Sketching Exercises p.215 3.7 Optimization Problems Exercises p.223 3.8 Newton's Method Exercises p.233 3.9 Differentials Exercises p.240 Review Exercises p.242 Problem Solving p.245

### Chapter 4

Integration

 4.1 Antiderivatives and Indefinite Integration Exercises p.255 4.2 Area Exercises p.267 4.3 Reimann Sums and Definite Integrals Exercises p.278 4.4 The Fundamental Theorem of Calculus Exercises p.293 4.5 Integration by Substitution Exercises p.306 4.6 Numerical Integration Exercises p.316 Review Exercises p.318 Problem Solving p.321

### Chapter 5

Logarithmic, Exponential, And Other Transcendental Functions

 5.1 The Natural Logarithmic Function: Differentiation Exercises p.331 5.2 The Natural Logarithmic Function: Integration Exercises p.340 5.3 Inverse Functions Exercises p.349 5.4 Exponential Functions: Differentiation and Integration Exercises p.358 5.5 Bases Other Than e and Applications Exercises p.368 5.6 Inverse Trigonometric Functions: Differentiation Exercises p.379 5.7 Inverse Trigonometric Functions: Integration Exercises p.387 5.8 Hyperbolic Functions Exercises p.398 Review Exercises p.401 Problem Solving p.403

### Chapter 6

Differential Equations

 6.1 Slope Fields and Euler's Method Exercises p.411 6.2 Differential Equations: Growth and Decay Exercises p.420 6.3 Separation of Variables and the Logistic Equation Exercises p.431 6.4 First-Order Linear Differential Equations Exercises p.440 Review Exercises p.443 Problem Solving p.445

### Chapter 7

Application Of Integrals

 7.1 Area of a Region Between Two Curves Exercises p.454 7.2 Volume: The Disk Method Exercises p.465 7.3 Volume: The Shell Method Exercises p.474 7.4 Arc Length and Surfaces of Revolution Exercises p.485 7.5 Work Exercises p.495 7.6 Moments, Centers of Mass, and Centeroids Exercises p.506 7.7 Fluid Pressure and Fluid Force Exercises p.513 Review Exercises p.515 Problem Solving p.517

### Chapter 8

Integration Techniques, L'Hôpital's Rules, And Improper Integrals

 8.1 Basic Integration Rules Exercises p.524 8.2 Integration by Parts Exercises p.533 8.3 Trigonometric Integrals Exercises p.542 8.4 Trigonometric Substitution Exercises p.551 8.5 Partial Fractions Exercises p.561 8.6 Integration by Tables and Other Integration Techniques Exercises p.567 8.7 Indeterminate Forms and L'Hôpital's Rules Exercises p.576 8.8 Improper Integrals Exercises p.587 Review Exercises p.591 Problem Solving p.593

### Chapter 9

Infinite Series

 9.1 Sequences Exercises p.604 9.2 Series and Convergence Exercises p.614 9.3 The Integral Test and p-Series Exercises p.622 9.4 Comparisons of Series Exercises p.630 9.5 Alternating Series Exercises p.638 9.6 The Ratio and Root Tests Exercises p.647 9.7 Taylor Polynomials and Approximations Exercises p.658 9.8 Power Series Exercises p.668 9.9 Representation of Functions by Power Series Exercises p.676 9.10 Taylor and Maclaurian Series Exercises p.687 Review Exercises p.690 Problem Solving p.693

### Chapter 10

Conics, Parametric Equations, And Polar Coordinates

 10.1 Conics and Calculus Exercises p.706 10.2 Plane Curves and Parametric Equations Exercises p.718 10.3 Parametric Equations and Calculus Exercises p.727 10.4 Polar Coordinates and Polar Graphs Exercises p.738 10.5 Area and Arc Length in Polar Coordinates Exercises p.747 10.6 Polar Equations of Conics and Kepler's Laws Exercises p.755 Review Exercises p.758 Problem Solving p.761

### Chapter 11

Vectors And The Geometry Of Space

 11.1 Vectors in the Plane Exercises p.771 11.2 Space Coordinates and Vectors in Space Exercises p.780 11.3 The Dot Product of Two Vectors Exercises p.789 11.4 The Cross Product of Two Vectors in Space Exercises p.798 11.5 Lines and Planes in Space Exercises p.807 11.6 Surfaces in Space Exercises p.820 11.7 Cylindrical and Spherical Coordinates Exercises p.827 Review Exercises p.829 Problem Solving p.831

### Chapter 12

Vector-Valued Functions

 12.1 Vector-Valued Functions Exercises p.839 12.2 Differentiation and Integration of Vector-Valued Functions Exercises p.848 12.3 Velocity and Acceleration Exercises p.856 12.4 Tangent Vectors and Normal Vectors Exercises p.865 12.5 Arc Length and Curvature Exercises p.877 Review Exercises p.881 Problem Solving p.883

### Chapter 13

Functions Of Several Variables

 13.1 Introduction to Functions of Several Variables Exercises p.894 13.2 Limits and Continuity Exercises p.904 13.3 Partial Derivatives Exercises p.914 13.4 Differentials Exercises p.923 13.5 Chain Rules for Functions of Several Variables Exercises p.931 13.6 Directional Derivatives and Gradients Exercises p.942 13.7 Tangent Planes and Normal Lines Exercises p.951 13.8 Extrema of Functions of Two Variables Exercises p.960 13.9 Applications of Extrema of Functions of Two Variables Exercises p.966 13.10 Lagrange Multipliers Exercises p.976 Review Exercises p.978 Problem Solving p.981

### Chapter 14

Multiple Integration

 14.1 Iterated Integrals and Area in the Plane Exercises p.990 14.2 Double Integrals and Volume Exercises p.1000 14.3 Change of Variables: Polar Coordinates Exercises p.1009 14.4 Center of Mass and Moments of Inertia Exercises p.1018 14.5 Surface Area Exercises p.1025 14.6 Triple Integrals and Applications Exercises p.1035 14.7 Triple Integrals in Cylindrical and Spherical Coordinates Exercises p.1043 14.8 Change of Variables: Jacobians Exercises p.1050 Review Exercises p.1052 Problem Solving p.1055

### Chapter 15

Vector Analysis

 15.1 Vector Fields Exercises p.1067 15.2 Line Integrals Exercises p.1079 15.3 Conservative Vector Fields and Independence of Path Exercises p.1090 15.4 Green's Theorem Exercises p.1099 15.5 Parametric Surfaces Exercises p.1109 15.6 Surface Integrals Exercises p.1122 15.7 Divergence Theorem Exercises p.1130 15.8 Stoke's Theorem Exercises p.1137 Review Exercises p.1138 Problem Solving p.1141
##### Can you find your fundamental truth using Slader as a Larson Calculus solutions manual?

YES! Now is the time to redefine your true self using Slader’s Larson Calculus answers. Shed the societal and cultural narratives holding you back and let step-by-step Larson Calculus textbook solutions reorient your old paradigms. NOW is the time to make today the first day of the rest of your life. Unlock your Larson Calculus PDF (Profound Dynamic Fulfillment) today. YOU are the protagonist of your own life. Let Slader cultivate you that you are meant to be! 